Deaths from COVID-19 depend on millions of people understanding risk and translating this understanding into risk-reduction behaviors. Although numerical information about risk is helpful, numbers are surprisingly ambiguous, and there are predictable mismatches in risk perception between laypeople and experts. Hence, risk communication should convey the qualitative, contextualized meaning of risk.

Amidst the COVID-19 crisis, it is crucial to understand how people think about risk and how this determines their risk-reduction behaviors [1]. As in other public health problems, outcomes hinge on people’s choices: whether to practice social distancing to prevent the spread of COVID-19, safer sex to prevent HIV/AIDS, or vaccination to prevent seasonal influenza. However, there is a fundamental mismatch between how most people think about risk and the assumptions experts make about actual and ideal human thinking. That is, most people think about risk in terms of qualitative meaning, called gist, as opposed to the precise details of risk information [2]. This mismatch produces predictable pitfalls in risk communication that are avoidable.

Why Numbers Are Ambiguous
The mismatch between gist and precise representations of risk goes beyond merely rounding off numbers, lumping rather than splitting, or innumeracy – the numerical equivalent of illiteracy [3]. To be sure, numeracy is a good thing. Popular numeracy tests ask respondents about probabilities and risks, such as questions about how to convert frequencies into probabilities, order different probabilities, and discriminate lower from higher risks. Other tests ask people to estimate the values displayed in a bar graph [4]. It is important to be able to read a graph and to know that a 0.10 probability of contracting COVID-19 is higher than a 0.01 probability. Every day during the pandemic, graphs and numbers hurl past the public.

However, numeracy is not sufficient to understand risk. In fact, numbers are ambiguous in the way that words are ambiguous, perhaps more so [5,6]. Suppose that a person hears that the number of deaths in the USA has surpassed 80,000, that the risk of transmission of COVID-19 is 2–3 times greater than that of the seasonal influenza, and that the mortality rate is about 3% of reported cases (Box 1). Decisions to act depend on the meaningful essence of this information. A simple linear transformation of numbers to categories does not capture the essence of risk. A nonlinear transformation of numbers does not suffice either. For example, a probability of 3% of rain would be low, but a probability of death of 3% from COVID-19 is high. Context matters for meaning.

Much research in the decision sciences has been devoted to demonstrating that context biases risky decisions, even making people who are risk-avoiding become risk-seeking just by changing how the same underlying facts are described [7]. These biases illustrate the human tendency to focus on changes relative to a reference point [8]. For example, a woman consulting the Breast Cancer Risk Assessment tool online (https://bcrisktool.cancer.gov/) is likely to be relieved to discover that her risk of cancer is below average because it is less than that of the population rate of about 13%, but how should she interpret these numbers? The numbers do not tell her the most important thing, namely, whether her risk is low or high. Her actions, whether to be screened more often than the average woman, and emotions, whether to feel calm or anxious, hinge on her interpretation of the gist of the risk: What does this information mean in context?

Meaning in context does not mirror literal reality. Typically, people do not think using what are called ‘verbatim representations’ of information. They think in fuzzy imprecise ways that interpret reality. For example, during a recent meeting I attended, public-health experts pointed out that those who test negative for a genetic mutation that increases breast-cancer risk technically do not have the same probability of developing breast cancer as members of the general population. But what is the gist of their risk? Testing negative does not mean that they have zero risk. Rather, their risk is less than the population average but remains in the same ballpark – the bottom line is that they could still develop cancer and need to take measures to reduce their risk (e.g., screening). For those who test negative, the numbers change (and risk relative to before the test was given declines) but the gist of absolute risk stays about the same. Having a sense of relative and absolute risk can be important in different ways for different decisions [9].

Predictable Disconnects between Laypeople and Experts: When Knowledge Provides Context
Unfortunately, people cannot look up their individualized risk for COVID-19 using an online tool. As the average person looks around, he or she is likely to perceive little risk from COVID-19. After all, few people have died out of a vast number of people in the state where he or she lives. This ratio competence – the ability to understand that probabilities depend on the frequency of target events relative to a
reference class of target and nontarget frequencies – is present early in life and in nonliterate cultures [10]. Thus, the perception of low personal risk is understandable and is likely to evoke resistance to risk-reduction measures such as social distancing, especially when they involve extreme limitations on economic activity and human interaction.

Although the risks of COVID-19 might seem low, background knowledge provides more than facts. It offers a qualitative meaning that draws together pieces of reality and interprets it. Thus, the perception of low personal risk is understandable and is likely to evoke resistance to risk-reduction measures such as social distancing, especially when they involve extreme limitations on economic activity and human interaction.

Note that background knowledge, and scientific literacy broadly, allows members of the public to recognize what is plausible – what is likely to be true – as opposed to necessarily providing memorized truths that directly contradict incoming misinformation [11]. For example, one might accurately argue that the link between vaccines and autism has only been studied for a limited number of childhood vaccines. This argument was made by a vaccination opponent; it is perfectly logical and even true. However, the question is whether such a link is plausible given current scientific knowledge.

Misinformation takes root in ignorance when the world does not make sense [12]. For example, the causes of autism, multiple sclerosis, and narcolepsy are unknown. Susceptibility is fostered by mistrust and suspicion of those perceived as powerful elites (the government, the rich, and researchers working in secret laboratories) and ‘the other’ (e.g., the ‘Wuhan virus’). Bias can occur regardless of political persuasion [13]. Most important, misinformation is effective when it makes sense of the world and troubling events in it, when it offers a qualitative meaning that draws together pieces of reality and interprets them. This meaning might be woefully incomplete, but it is unlikely to be challenged if people do not seek out disconfirmatory tests and if they limit their contacts to like-minded others [14]. Reality is not infinitely reinterpretable, however, which creates opportunities to reach the public by communicating more than the facts, that is, conveying what the facts mean.

A Coda for Cognition

I have argued for the important role of cognitive science in understanding how people perceive risk and take risk-reduction actions in response to health threats, such as COVID-19. Emotion and social biases seem more relevant to risk perception than cognitive representations because of stereotypes about what cognition is. The stereotypical view of cognition is that it is cold, deliberative, and involves nothing more than educating people about rote facts. Perhaps this view is influenced by our reliance on the computer, and more recently machine learning, as metaphors for human cognition. When considering risk perceptions and responses related to such issues as HIV/AIDS, vaccination, and COVID-19, social, motivational, and emotional factors might seem paramount. Certainly, all of these factors (along with many others such as culture, worldview, and experiences) matter in human responses to risk. But the interpretation of information and events surrounding risks – their qualitative meaning – is fundamental because the interpretation cues emotions, motivations, and values. Qualitative does not imply noncomputational, because computations are merely tools for representing how people process information [15]. However, the meaningful imprecision of human cognition is not well captured yet in artificial intelligence. To a machine, human beings can be defined as featherless bipeds without irony or bemusement. Humans chuckle. This definition is accurate in that it picks out the correct referents, but it omits the essence of what it means to be a human being.
So, what can we do to better communicate risk? Begin with the end in mind: give people what they need to understand the qualitative, contextualized meaning of risk information. Figure 1 presents examples of how to combine pretest probabilities with COVID-19 testing to yield qualitative meanings. This approach has been applied to patients deciding among medications with serious side effects, teenagers making decisions about unprotected sex, and healthy people trying to figure out their genetic risk for cancer.

<table>
<thead>
<tr>
<th>Pretest Probability</th>
<th>Sensitivity = .91 and Specificity = .99</th>
<th>Sensitivity = .75 and Specificity = .99</th>
<th>Sensitivity = .99 and Specificity = .91</th>
<th>Sensitivity = .99 and Specificity = .75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive Result</td>
<td>0.83 0.96 0.99 1.0 1.0</td>
<td>0.80 0.95 0.99 1.0 1.0</td>
<td>0.80 0.94 0.99 1.0 1.0</td>
<td>0.80 0.94 0.99 1.0 1.0</td>
</tr>
<tr>
<td>Negative Result</td>
<td>0.00 0.02 0.08</td>
<td>0.01 0.06 0.20</td>
<td>0.00 0.01 0.04</td>
<td>0.00 0.01 0.04</td>
</tr>
</tbody>
</table>

Figure 1. Illustrations of How Prior Probability and Test Accuracy Combine to Determine Probability Once a Test Result Is Known. Laypeople and physicians can be easily confused by the fact that results of a good diagnostic test might be the opposite of the truth: saying you do NOT have disease when you DO and vice versa. Sensitivity is the probability of a positive test result when someone has COVID-19 infection. Specificity is the probability of a negative test result when someone does NOT have COVID-19 infection. Example using the examples of how to combine pretest of risk information. Figure 1 presents how to give people what they need to understand the qualitative, contextualized meaning of risk information. Reference:


References